(Maximum Marks : 75)

2106220096 A

Reg.No	••	••		•••
Signature.		•••	•••	•••

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/MANAGEMENT/ COMMERCIAL PRACTICE – APRIL - 2022

MATHEMATICS - II

[Time : 3 hours]

(9x1=9 marks)

PART-A

I. Answer **all** the following questions in one word or sentence. Each question carries 1 mark.

		Module Outcome	Cognitive level
1	Evaluate $\begin{vmatrix} \sin x & \cos x \\ -\cos x & \sin x \end{vmatrix}$	M 1.01	U
2	If $A = \begin{bmatrix} 0 & 0 \\ 2 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 7 \\ 4 & 8 \end{bmatrix}$, find $A + B$	M 1.02	U
3	$If A = \begin{bmatrix} 1 & 4 & 3 \\ 2 & 1 & 6 \\ -1 & 2 & 0 \end{bmatrix}, \text{ find 3A}$	M1.02	R
	Find the vector \overrightarrow{PQ} where P is the point (1,2,3) and Q is the		
4	point (3,5,6).	M2.02	U
5	Find the length of the vector $\vec{a} = 2\hat{\imath} - 3\hat{\jmath} + \hat{k}$	M2.02	R
6	Evaluate $\int \sec x \tan x dx$	M3.01	R
7	Evaluate $\int e^{2x} dx$	M3.02	U
8	Find the order and degree of the differential equation. $5\frac{d^3y}{dx^3} - 6\left(\frac{dy}{dx}\right)^2 + 4y = 0$	M4.02	R
9	Solve $\frac{dy}{dx} = x$	M4.02	U

PART B

II. Answer **any Eight** questions from the following. Each question carries 3 marks.

		(8x3=24 marks) Module Cognitive Outcome level		
1	Solve for 'x' if $\begin{vmatrix} x & 3 \\ 12 & x \end{vmatrix} = \begin{vmatrix} 4 & 3 \\ 1 & 4 \end{vmatrix}$	M 1.01	U	
2	If $A = \begin{bmatrix} 1 & 4 & 3 \\ 2 & 1 & 6 \\ -1 & 2 & 0 \end{bmatrix}$ compute $A + A^{T}$ and $A - A^{T}$	M 1.03	R	
3	Find the inverse of the matrix $A = \begin{bmatrix} 1 & 2 \\ 4 & 9 \end{bmatrix}$	M1.03	R	

4	If $\vec{a} = 2\vec{i} + 2\vec{j} - \vec{k}$ and $\vec{b} = 6\vec{i} - 3\vec{j} + 2\vec{k}$ find $\vec{a} \times \vec{b}$	M2.02	U
5	Find the values of x, y and z so that $2\hat{i} + 4\hat{j} - z\hat{k} = x\hat{i} + y\hat{j} + 3\hat{k}$	M2.02	R
6	Evaluate $\int \frac{2x}{x^2+1} dx$	M2.02	U
7	Integrate $x e^x$ with respect to x	M3.02	U
8	Find $\int_0^1 \frac{1}{\sqrt{1-x^2}} dx$	M3.03	R
9	Find the area under the straight line $y = 2x + 3$ bounded by the	M4.01	U
	X axis and the ordinates at $x = 1$ and $x = 3$		
10	Solve $dx(1+y^2) = dy(1+x^2)$	M4.02	А

PART C

III. Answer **all** questions from the following. Each question carries 7 marks.

(6x7=42marks)

		Module Outcome	Cognitive level
1	Solve the following system of equations using Cramer's rule	M 1.02	U
	x + 2y - z = -3, $3x + y + z = 4$, $x - y + 2z = 6$		
	OR		
2	Solve $5x + 2y = 4$, $2x - y = 7$ by finding the inverse of the	M1.03	U
	coefficient matrix.		
3	The constant forces $2\vec{i} - 5\vec{j} + 6\vec{k}$, $-\vec{i} + 2\vec{j} - \vec{k}$ and $2\vec{i} + 7\vec{j}$ act on a		
	particle from the position $4\vec{i} - 3\vec{j} - 2\vec{k}$ to $6\vec{i} + \vec{j} - 3\vec{k}$. Find the	M2.03	U
	total work done.		
	OR		
4	If $\vec{a} = 2\vec{i} + 3\vec{j} + 4\vec{k}$, $\vec{b} = -\vec{i} + 3\vec{j} + 2\vec{k}$ find the unit vector in the direction of the vector $3\vec{a} + 4\vec{b}$	M2.02	U
5	(i) If $\vec{a} = 2\vec{i} + 3\vec{j} - \vec{k}$, and $\vec{b} = 3\vec{i} - \vec{j} + \vec{k}$ find $\vec{a} \cdot \vec{b}$ (2 marks)	M2.02	R
	(ii) Find the moment about the point $\hat{i} + 2\hat{j} - \hat{k}$ of the		
	force represented by $\hat{\iota} + 2\hat{\jmath} + \hat{k}$ acting through the	M2.03	R
	point $2\hat{i}+3\hat{j}+\hat{k}$ (5 marks)		
	OR		

	(i) If $ \vec{a} = 5$, $ \vec{b} = 4$, $\vec{a} \cdot \vec{b} = 10$, find the acute angle		M2.02	А
6	between \vec{a} and \vec{b}	(2 marks)	1112.02	A
	(ii) Find a unit vector perpendicular to the vectors		M2.02	А
	$\hat{\imath} + \hat{\jmath} + \hat{k}$ and $\hat{\imath} + 3\hat{\jmath} - \hat{k}$	(5 marks)		
7	(i) Integrate $3x^2 - 4x + 6$ with respect x.	(3 marks)	M3.01	R
	(ii) Evaluate $\int x \log x dx$	(4 marks)	M3.03	R
	OR			
8	(i) Find $\int_0^1 \frac{1}{1+x^2} dx$	(3 marks)	M3.03	U
	(ii) Evaluate $\int x \sec(x^2)\tan(x^2)dx$	(4 marks)	M3.02	U
9	Evaluate $\int_0^{\pi/2} \frac{\cos x}{1+\sin x} dx$		M3.03	U
	OR			
10	Find		M2 02	D
	$(\mathbf{i})\int e^{\tan x} \sec^2 x dx$	(3 marks)	M3.02	R
	$(ii)\int_0^{\pi} \cos^2 x dx$	(4 marks)	M3.03	R
11	Find the area bounded by the curve $y = x^2 + x$ and	the x-axis	M4.01	А
	OR			
12	Solve $\frac{dy}{dx} + y \cot x = 2 \cos x$		M4.02	А
