\qquad
\qquad

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/MANAGEMENT/ COMMERCIAL PRACTICE - APRIL - 2022

MATHEMATICS - II

(Maximum Marks : 75)

PART-A

[Time : 3 hours]
I. Answer all the following questions in one word or sentence. Each question carries 1 mark.
(9x1=9 marks)
Module Cognitive

1	Evaluate $\left\|\begin{array}{rr}\sin x & \cos x \\ -\cos x & \sin x\end{array}\right\|$	M 1.01	U
2	If $A=\left[\begin{array}{ll}0 & 0 \\ 2 & 1\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{ll}3 & 7 \\ 4 & 8\end{array}\right]$, find $\mathrm{A}+\mathrm{B}$	M 1.02	U
3	If $A=\left[\begin{array}{rrr}1 & 4 & 3 \\ 2 & 1 & 6 \\ -1 & 2 & 0\end{array}\right]$, find 3A	M1.02	R
4	Find the vector $\overrightarrow{P Q}$ where P is the point $(1,2,3)$ and Q is the point $(3,5,6)$.	M2.02	U
5	Find the length of the vector $\vec{a}=2 \hat{\imath}-3 \hat{\jmath}+\hat{k}$	M2.02	R
6	Evaluate $\int \sec \mathrm{x} \tan \mathrm{xdx}$	M3.01	R
7	Evaluate $\int \mathrm{e}^{2 \mathrm{x}} \mathrm{dx}$	M3.02	U
8	Find the order and degree of the differential equation. $5 \frac{d^{3} y}{d x^{3}}-6\left(\frac{d y}{d x}\right)^{2}+4 y=0$	M4.02	R
9	Solve $\frac{d y}{d x}=\mathrm{x}$	M4.02	U

PART B

II. Answer any Eight questions from the following. Each question carries 3 marks.

		(8x3=24 marks)	
		Module Outcome	Cognitive level
1	Solve for ' x ' if $\left\|\begin{array}{ll}x & 3 \\ 12 & x\end{array}\right\|=\left\|\begin{array}{ll}4 & 3 \\ 1 & 4\end{array}\right\|$	M 1.01	U
2	If $A=\left[\begin{array}{rrr}1 & 4 & 3 \\ 2 & 1 & 6 \\ -1 & 2 & 0\end{array}\right]$ compute $\mathrm{A}+\mathrm{A}^{\mathrm{T}}$ and $\mathrm{A}-\mathrm{A}^{\mathrm{T}}$	M 1.03	R
3	Find the inverse of the matrix $\mathrm{A}=\left[\begin{array}{ll}1 & 2 \\ 4 & 9\end{array}\right]$	M1.03	R

4	If $\vec{a}=2 \vec{\imath}+2 \vec{\jmath}-\vec{k}$ and $\vec{b}=6 \vec{\imath}-3 \vec{\jmath}+2 \vec{k}$ find $\vec{a} \mathrm{x} \vec{b}$	M 2.02	U
5	Find the values of x, y and z so that $2 \hat{\imath}+4 \hat{\jmath}-\mathrm{z} \hat{k}=\mathrm{x} \hat{\imath}+\mathrm{y} \hat{\jmath}+3 \hat{k}$	M 2.02	R
6	Evaluate $\int \frac{2 x}{x^{2}+1} \mathrm{dx}$	M 2.02	U
7	Integrate $\mathrm{x} \mathrm{e}^{\mathrm{x}}$ with respect to x	M 3.02	U
8	Find $\int_{0}^{1} \frac{1}{\sqrt{1-x^{2}}} d x$	M 3.03	R
9	Find the area under the straight line $\mathrm{y}=2 \mathrm{x}+3$ bounded by the X axis and the ordinates at $\mathrm{x}=1$ and $\mathrm{x}=3$	M 4.01	U
10	Solve dx $\left(1+\mathrm{y}^{2}\right)=\mathrm{dy}\left(1+\mathrm{x}^{2}\right)$	M 4.02	A

PART C

III. Answer all questions from the following. Each question carries 7 marks.
($6 \times 7=42 \mathrm{marks}$)

		Module Outcome	$\begin{gathered} \text { Cognitive } \\ \text { level } \\ \hline \end{gathered}$
1 2	Solve the following system of equations using Cramer's rule $x+2 y-z=-3,3 x+y+z=4, x-y+2 z=6$ OR Solve $5 x+2 y=4,2 x-y=7$ by finding the inverse of the coefficient matrix.	$\begin{array}{\|c} \hline \text { M } 1.02 \\ \text { M1.03 } \end{array}$	$\overline{\mathrm{U}}$ U
3	The constant forces $2 \vec{i}-5 \vec{j}+6 \vec{k},-\vec{i}+2 \vec{j}-\vec{k}$ and $2 \vec{i}+7 \vec{j}$ act on a particle from the position $4 \vec{i}-3 \vec{j}-2 \vec{k}$ to $6 \vec{i}+\vec{j}-3 \vec{k}$. Find the total work done. OR If $\vec{a}=2 \vec{i}+3 \vec{j}+4 \vec{k}, \vec{b}=-\vec{i}+3 \vec{j}+2 \vec{k}$ find the unit vector in the direction of the vector $3 \vec{a}+4 \vec{b}$	M2.03 M2.02	U U
5	(i) If $\vec{a}=2 \vec{i}+3 \vec{j}-\vec{k}$, and $\vec{b}=3 \vec{i}-\vec{j}+\vec{k}$ find $\vec{a} . \vec{b}$ (2 marks) (ii) Find the moment about the point $\hat{\imath}+2 \hat{\jmath}-\hat{k}$ of the force represented by $\hat{\imath}+2 \hat{\jmath}+\hat{k}$ acting through the point $2 \hat{\imath}+3 \hat{\jmath}+\hat{k}$ (5 marks) OR	$\begin{array}{\|l} \hline \text { M2.02 } \\ \text { M2.03 } \end{array}$	R R

\begin{tabular}{|c|c|c|c|}
\hline 6 \& \begin{tabular}{l}
(i) If \(|\vec{a}|=5,|\vec{b}|=4, \vec{a} \cdot \vec{b}=10\), find the acute angle between \(\vec{a}\) and \(\vec{b}\) \\
(2 marks) \\
(ii) Find a unit vector perpendicular to the vectors \\
\(\hat{\imath}+\hat{\jmath}+\hat{k}\) and \(\hat{\imath}+3 \hat{\jmath}-\hat{k}\) \\
(5 marks)
\end{tabular} \& \[
\begin{aligned}
\& \text { M2.02 } \\
\& \text { M2.02 }
\end{aligned}
\] \& A
A \\
\hline 7
8 \& \begin{tabular}{l}
(i) Integrate \(3 x^{2}-4 x+6\) with respect x . (3 marks) \\
(ii) Evaluate \(\int x \log \mathrm{x} \mathrm{dx}\) \\
(4 marks) \\
OR \\
(i) Find \(\int_{0}^{1} \frac{1}{1+x^{2}} d x\) \\
(3 marks) \\
(ii) Evaluate \(\int x \sec \left(x^{2}\right) \tan \left(x^{2}\right) d x\) \\
(4 marks)
\end{tabular} \& \[
\begin{aligned}
\& \hline \text { M3.01 } \\
\& \text { M3.03 } \\
\& \text { M3.03 } \\
\& \text { M3.02 }
\end{aligned}
\] \& \begin{tabular}{c}
R \\
R \\
\\
U \\
\hline
\end{tabular} \\
\hline 9

10 \& | Evaluate $\int_{0}^{\pi / 2} \frac{\cos x}{1+\sin x} d x$ |
| :--- |
| OR |
| Find |
| (i) $\int e^{\tan x} \sec ^{2} x d x$ |
| (3 marks) |
| (ii) $\int_{0}^{\pi} \cos ^{2} \mathrm{xdx}$ |
| (4 marks) | \& \[

$$
\begin{array}{|c}
\hline \text { M3.03 } \\
\text { M3.02 } \\
\text { M3.03 }
\end{array}
$$

\] \& | U |
| :---: |
| |
| R |

\hline 11

12 \& | Find the area bounded by the curve $y=x^{2}+x$ and the x-axis |
| :--- |
| OR |
| Solve $\frac{d y}{d x}+y \cot x=2 \cos x$ | \& \[

$$
\begin{aligned}
& \text { M4.01 } \\
& \text { M4.02 }
\end{aligned}
$$
\] \& A

A

\hline
\end{tabular}

