
Android OS
Android is a mobile operating system that is based on a modified version of Linux. It was
originally developed by a startup of the same name, Android, Inc. In 2005, as part of its
strategy to enter the mobile space, Google purchased Android and took over its development
work (as well as its development team).

Google wanted Android to be open and free; hence, most of the Android code was released
under the open-source Apache License, which means that anyone who wants to use Android
can do so by downloading the full Android source code. Moreover, vendors (typically
hardware manufacturers) can add their own proprietary extensions to Android and customize
Android to differentiate their products from others. This simple development model makes
Android very attractive and has thus piqued the interest of many vendors.

The main advantage of adopting Android is that it offers a unified approach to application
development. Developers need only develop for Android, and their applications should be
able to run on numerous different devices, as long as the devices are powered using Android.
In the world of smartphones, applications are the most important part of the success chain.

Features of Android
As Android is open source and freely available to manufacturers for customization, there are
no fixed hardware and software configurations. However, Android itself supports the
following features:

Storage — Uses SQLite, a lightweight relational database, for data storage.

Connectivity — Supports GSM/EDGE, IDEN, CDMA, EV-DO, UMTS, Bluetooth (includes
A2DP and AVRCP), WiFi, LTE, and WiMAX.

Messaging — Supports both SMS and MMS.

Web browser — Based on the open-source WebKit, together with Chrome’s V8 JavaScript
engine supporting HTML5 and CSS3.

Media support — Includes support for the following media: H.263, H.264 (in 3GP or MP4
container), MPEG-4 SP, AMR, AMR-WB (in 3GP container), AAC, HE-AAC (in MP4 or
3GP container), MP3, MIDI, Ogg Vorbis, WAV, JPEG, PNG, GIF, and BMP

Hardware support — Accelerometer Sensor, Camera, Digital Compass, Proximity Sensor,
and GPS

Multi -touch — Supports multi-touch screens

Multi -tasking — Supports multi-tasking applications

Flash support — Android 2.3 supports Flash 10.1.

Tethering — Supports sharing of Internet connections as a wired/wireless hotspot

Beautiful UI - Android OS basic screen provides a beautiful and intuitive user interface.

Resizable widgets - Widgets are resizable, so users can expand them to show more content or
shrink them to save space

Multi-Language - Support single direction and bi-directional text.

GCM - Google Cloud Messaging (GCM) is a service that let developers send short message
data to their users on Android devices, without needing a proprietary sync solution.

Wi-Fi Direct - A technology that let apps discover and pair directly, over a high-bandwidth
peer-to-peer connection.

Android Beam - A popular NFC-based technology that let users instantly share, just by
touching two NFC-enabled phones together.

Different versions of Android
Each version of Android since 1.5 has been developed with a specific codename. These
codenames are chosen alphabetically and have thus far all been dessert items (or, generically,
sweet/sugary foods). Some code names are associated with more than one version number,
while others are limited to only a specific one. The naming typically appears to correspond to
changes in the developer API levels, but this is not always true.

The following names are used for the currently existing Android releases. Note that versions
1.0 and 1.1 were not publicly named. However, Android 1.1 was internally referred to as
"Petit-Four"

● Android 1.0 (API 1)
● Android 1.1 (API 2)
● Android 1.5 Cupcake (API 3)
● Android 1.6 Donut (API 4)
● Android 2.0 Eclair (API 5)
● Android 2.2 Froyo (API 8)
● Android 2.3 Gingerbread (API 9)
● Android 3.0 Honeycomb (API 11)
● Android 4.0 Ice Cream Sandwich (API 14)
● Android 4.1 Jelly Bean (API 16)
● Android 4.4 KitKat (API 19)
● Android 5.0 Lollipop (API 21)

● Android 6.0 Marshmallow (API 23)
● Android 7.0 Nougat (API 24)
● Android 8.0 Oreo (API 26)
● Android 9 Pie (API 28)
● Android 10 (API 29)

Comparison of Android and Apple's’ IOS

These are the two Mobile Operating Systems used primarily in mobile technology, such as
smartphones and tablets. Android, which is Linux-bases and partly open source, is more
PC-like than IOS, in that its interface and basic features are generally more customizable
from top to bottom. However, IOS’ uniform design elements are sometimes seen as being
more user-friendly. Switching from IOS to Android or vice versa will require you to buy apps
again. Android is now the words most commonly used Smartphone platform and is used by
many different phone manufacturers. iOS is only used on Apple devices such as the iPhone.

Android iOS

Source model Open source Closed, with open source
components.

OS family Linux OS X, UNIX

Initial release September 23, 2008 July 29, 2007

Customizability A lot. Can change almost
anything.

Limited unless jailbroken

Developer Google, Open Handset Alliance Apple Inc.

Widgets Yes No, except in NotificationCenter

Available language(s) 100+ Languages 34 Languages

File transfer Easier than iOS. Using USB port
and Android File Transfer
desktop app. Photos can be
transferred via USB without
apps.

More difficult. Media files can be
transferred using iTunes desktop
app. Photos can be transferred out
via USB without apps.

Available on Many phones and tablets. Major
manufacturers are Samsung,
Motorola, LG, HTC and Sony..
Nexus and Pixel line of devices is
pure Android, others bundle
manufacturer software.

iPod Touch, iPhone, iPad, Apple
TV (2nd and 3rd generation)

Calls and messaging Google Hangouts. 3rd party apps
like Facebook Messenger,
WhatsApp, Google Duo and
Skype all work on Android and
iOS both.

iMessage, FaceTime (with other
Apple devices only). 3rd party apps
like Google Hangouts, Facebook
Messenger, WhatsApp, Google Duo
and Skype all work on Android and
iOS both.

Internet browsing Google Chrome (or Android
Browser on older versions; other
browsers are available)

Mobile Safari

App store ,
Affordability and
interface

Google Play – 1,000,000+ apps.
Other app stores like Amazon
and Getjar also distribute
Android apps.

Apple app store – 1,000,000+ apps

Video chat Google Duo and other 3rd party
apps

FaceTime (Apple devices only) and
other 3rd party apps

Voice commands Google Now, Google Assistant Siri

Working state Current Current

Maps Google Maps Apple Maps

https://www.diffen.com/difference/Laptop_vs_Tablet_computer
https://www.diffen.com/difference/Apple_TV_vs_Roku
https://www.diffen.com/difference/Apple_TV_vs_Roku

Latest stable release
and Updates

Android 10(September 2019) 13 (Dember 5, 2019)

Alternative app stores
and side loading

Several alternative app stores
other than the official Google
Play Store. (e.g. Aptoide, Galaxy
Apps)

Apple blocks 3rd party app stores.
The phone needs to be jailbroken if
you want to download apps from
other stores.

Battery life and
management

Many Android phone
manufacturers equip their devices
with large batteries with a longer
life.

Apple batteries are generally not as
big as the largest Android batteries.
However, Apple is able to squeeze
decent battery life via
hardware/software optimizations.

Open source Kernel, UI, and some standard
apps

The iOS kernel is not open source
but is based on the open-source
Darwin OS.

File manager Yes. (Stock Android File
Manager included on devices
running Android 7.1.1)

Not available

Photos & Videos
backup

Apps available for automatic
backup of photos and videos.
Google Photos allows unlimited
backup of photos. OneDrive,
Amazon Photos and Dropbox are
other alternatives.

Up to 5 GB of photos and videos
can be automatically back up with
iCloud. All other vendors like
Google, Amazon, Dropbox, Flickr
and Microsoft have auto-backup
apps for both iOS and Android.

Security Android software patches are
available soonest to Nexus device
users. Manufacturers tend to lag
behind in pushing out these
updates. So at any given time a
vast majority of Android devices
are not running updated fully
patched software.

Most people will never encounter a
problem with malware because they
don’t go outside the Play Store for
apps. Apple's software updates
support older iOS devices also.

https://www.diffen.com/difference/Jailbreak_vs_Unlock

Rooting, bootloaders,
and jailbreaking

Access and complete control over
your device is available and you
can unlock the bootloader.

Complete control over your device
is not available.

Cloud services Native integration with Google
cloud storage. 15GB free, $2/mo
for 100GB, 1TB for $10. Apps
available for Amazon Photos,
OneDrive and Dropbox.

Native integration with iCloud.
5GB free, 50GB for $1/mo, 200GB
for $3/mo, 1TB for $10/mo. Apps
available for Google Drive and
Google Photos, Amazon Photos,
OneDrive and Dropbox.

Interface Touch Screen Touch Screen

Supported versions Android 5.0 & later (Android 4.4
is also supported but with
patches)

iOS 8 & later

First version Android 1.0, Alpha iOS 1.0

Architecture of Android
Android operating system is a stack of software components which is roughly divided into
five sections and four main layers as shown below in the architecture diagram.

https://www.diffen.com/difference/Box_vs_Dropbox
https://www.diffen.com/difference/Box_vs_Dropbox

Linux kernel — This is the kernel on which Android is based. This layer contains all the
lowlevel device drivers for the various hardware components of an Android device.

At the bottom of the layers is Linux. This provides basic system functionality like process
management, memory management, device management like camera, keypad, display etc.
Also, the kernel handles all the things that Linux is really good at, such as networking and a
vast array of device drivers, which take the pain out of interfacing to peripheral hardware.

Libraries — On top of Linux kernel there is a set of libraries. These contain all the code that
provides the main features of an Android OS. For example, the SQLite library provides
database support so that an application can use it for data storage. The WebKit library
provides functionalities for web browsing. Libraries to play and record audio and video, SSL
libraries responsible for Internet security etc.

Android runtime — At the same layer as the libraries, the Android runtime provides a set
of core libraries that enable developers to write Android apps using the Java programming
language. The Android runtime also includes the Dalvik virtual machine, which enables
every Android application to run in its own process; with its own instance of the Dalvik
virtual machine (Android applications are compiled into the Dalvik executables). Dalvik is a
specialized virtual machine designed specifically for Android and optimized for
battery-powered mobile devices with limited memory and CPU.

Application framework — Exposes the various capabilities of the Android OS to application
developers so that they can make use of them in their applications. The Application

Framework layer provides many higher-level services to applications in the form of Java
classes. Application developers are allowed to make use of these services in their
applications.

Applications — At this top layer, you will find applications that ship with the Android
device (such as Phone, Contacts, Browser, etc.), as well as applications that you download
and install from the Android Market. Any applications that you write are located at this layer.

Android Applications
Android applications are usually developed in the Java language using the Android Software
Development Kit. Once developed, Android applications can be packaged easily and sold out
either through a store such as Google Play or the Amazon Appstore. Android powers
hundreds of millions of mobile devices in more than 190 countries around the world. It's the
largest installed base of any mobile platform and is growing fast. Every day more than 1
million new Android devices are activated worldwide. This tutorial has been written with an
aim to teach you how to develop and package Android application. We will start from
environment setup for Android application programming and then drill down to look into
various aspects of Android applications.

Android Application Development Environment Setup (Using Eclipse)

For Android development, you can use a Mac, a Windows PC, or a Linux machine. All the
tools needed are free and can be downloaded from the Web freely. Following is the list of
software's you will need before you start your Android application programming.

∙ Java JDK

∙ Android SDK

∙ Eclipse IDE for Java Developers

∙ Android Development Tools (ADT) Eclipse Plugin

JDK

JDK is the java development kit which contains the libraries, debugger, compiler,
documentations for java language. For android application development we use java language
so JDK is essential.

Eclipse

Eclipse is an integrated development environment (IDE) for Android Application
Development. It is a multi-language software development environment featuring an
extensible plug-in system. It can be used to develop various types of applications, using

languages such as Java, Ada, C, C++, COBOL, Python, etc. For Android development, you
should download the Eclipse IDE for Java EE Developers.

Android SDK

The Android SDK contains a debugger, libraries, an emulator, documentation, sample code,
and tutorials.

Android Development Tools (ADT)

The Android Development Tools (ADT) plug-in for Eclipse is an extension to the Eclipse
IDE that supports the creation and debugging of Android applications. Using the ADT, you
will be able to do the following in Eclipse:

Create new Android application projects.

Access the tools for accessing your Android emulators and devices.

Compile and debug Android applications.

Export Android applications into Android Packages (APK).

Create digital certificates for code-signing your APK

AVD

AVD stands for Android Virtual Devices. An AVD is an emulator instance that enables you to
model an actual device. Each AVD consists of a hardware profile, a mapping to a system
image, as well as emulated storage, such as a secure digital (SD) card. You can create as
many AVDs as you want in order to test your applications with several different
configurations. This testing is important to confirm the behaviour of your application when it
is run on different devices with varying capabilities.

Step 1 -Setup Java Development Kit (JDK)

Download the latest version of Java JDK from Oracle's Java site: Java SE Downloads. You
will find instructions for installing JDK in downloaded files, follow the given instructions to
install and configure the setup. Finally, set PATH and JAVA_HOME environment variables to
refer to the directory that contains java and javac. The methods to setup path and environment
variable is different in different Operating System

Step 2 -Setup Android SDK

Download the latest version of Android SDK from Android’s official website:
http://developer.android.com/sdk/index.html. If you are installing SDK on Windows machine,
then you will find ainstaller_rXX-windows.exe, so just download and run this exe which will
launch Android SDK Tool Setup wizard to guide you throughout the installation, so just
follow the instructions carefully. Finally, you will have Android SDK Tools installed on your

machine. Then launch Android SDK Manager using the option All Programs > Android SDK
Tools > SDK Manager, this will give you following window:

Once you launched SDK manager, it is time to install other required packages. By default it
will list down total 7 packages to be installed, but we will suggest to de-select Documentation
for Android SDK and Samples for SDK packages to reduce installation time. Next click the
Install 7 Packages button to proceed, which will display following dialogue box:

If you agree to install all the packages, select Accept All radio button and proceed by clicking
Install button. Close the SDK Manager.

Step 3 -Setup Eclipse IDE

To install Eclipse IDE, download the latest Eclipse binaries from
http://www.eclipse.org/downloads/. Once you have downloaded the installation, unpack the
binary distribution into a convenient location. For example in C:\eclipse on windows, or
/usr/local/eclipse on Linux and finally set PATH variable appropriately. Start the Eclipse IDE
according the method of your Operating system.

Step 4 -Setup Android Development Tools (ADT) Plug-in

This step will help you in setting Android Development Tool plugin for Eclipse. Let's start
with launching Eclipse and then, choose Help > Software Updates > Install New Software.
This will display the following dialogue box.

Now use Add button to add ADT Plugin as name and
https://dlssl.google.com/android/eclipse/ as the location. Then click OK to add this location.
As soon as you will click OK button to add this location, Eclipse starts searching for the
plug-in available in the given location and finally lists down the found plugins.

Now select all the listed plug-ins using Select All button and click Next button which will
guide you ahead to install Android Development Tools and other required plugins.

Step 5 –Create Android Virtual Device

The next step is to create AVD to be used for testing your Android applications. To test your
Android applications you will need a virtual Android device. So before we start writing our
code, let us create an Android virtual device. Launch Android AVD Manager using Eclipse
menu options Window > AVD Manager> which will launch Android AVD Manager. Use
New button to create a new Android Virtual Device and enter the following information,
before clicking Create AVD button.

If your AVD is created successfully it means your environment is ready for Android
application development.

Android Application Development Environment Setup (Using Android Studio)

Android Studio is Google's officially supported IDE for developing Android apps. Android Studio is

Google's officially supported IDE for developing Android apps. Based on IntelliJ IDEA, Android Studio

is freely available under Apache License 2.0. The most recent stable version, 3.2.1 october 2018,

includes the following features: Before you can use Android Studio to develop software, you'll need

to download the most recent Java Development Kit (JDK) for your computer as well.

● A unified environment where you can develop for all Android devices.

● Support for building Android TV apps and Android Wear apps.

● Template-based wizards to create common Android designs and components.

● A rich layout editor that lets users drag-and-drop user interface components, and that offers

an option to preview layouts on multiple screen configurations.

● Android-specific refactoring and quick fixes.

● Gradle-based build support.

● Lint tools to catch performance, usability, version compatibility, and other problems.

● ProGuard integration and app-signing capabilities.

● A fast and feature-rich emulator.

● Instant Run to push changes to your running app without building a new APK (Application

PacKage Zip file).

● Built-in support for Google Cloud Platform, enabling integration with Google Cloud

Messaging and App Engine.

● C++ and NDK support.

● Plugin architecture for extending Android Studio via plugins.

Google provides Android Studio for the Windows, Mac OS X, and Linux platforms. You can download

this software from the Android Studio homepage. The system requirement for Android Studio.

● Microsoft Windows 7/8/10 (32-bit or 64-bit) (for linux GNOME or KDE desktop: Tested on

Ubuntu 12.04, Precise Pangolin, GNU C Library (glibc) 2.11 or later)

● 2 GB RAM minimum, 8 GB RAM recommended

● 2 GB of available disk space minimum, 4 GB Recommended (500 MB for IDE + 1.5 GB for

Android SDK and emulator system image)

● 1280 x 800 minimum screen resolution

● JDK 8

● For accelerated emulator: 64-bit operating system and Intel processor with support for Intel

VT-x, Intel EM64T (Intel 64), and Execute Disable (XD) Bit functionality

Once you've ensured your operating system is compatible with Android Studio, download the

appropriate Android Studio distribution file.

Installing Android Studio on Windows

Open the downloaded Installation file to start the installation process. The installer responded by

presenting the Android Studio Setup dialog box

Clicking Next button to the following dialog box, which gives you the option to decline installing the

Android SDK (included with the installer) and an Android Virtual Device (AVD).

You may chose to keep the default settings. After clicking Next, you'll be taken to the license

agreement dialog box. Accept the license to continue the installation.

The next dialog box invites you to change the installation locations for Android Studio and the

Android SDK.

Change the location or accept the default locations and click Next.

The installer defaults to creating a shortcut for launching this program, or you can choose to decline.

Then click the Install button to begin installation.

The resulting dialog box shows the progress of installing Android Studio and the Android SDK.

Clicking the Show Details button will let you view detailed information about the installation

progress.

The dialog box will inform you when installation has finished.

To complete your installation, leave the Start Android Studio box checked and click Finish.

Running Android Studio
Android Studio presents a splash screen when it starts running:

On your first run, you'll be asked to respond to several configuration-oriented dialog boxes. The first

dialog box focuses on importing settings from any previously installed version of Android Studio.

If you don't have a previously installed version, you can just keep the default setting and click OK.

Android Studio will respond with a slightly enhanced version of the splash screen, followed by the

Android Studio Setup Wizard dialog box:

Validate your Android SDK and development environment setup

When you click Next, the setup wizard invites you to select an installation type for your SDK

components. For now I recommend you keep the default standard setting.

Click Next and verify your settings, then click Finish to continue.

The wizard will download and unzip various components. Click Show Details if you want to see more

information about the archives being downloaded and their contents.

Finally, click Finish to complete the wizard. You should see the Welcome to Android Studio dialog

box:

Features of Android Studio

Android Studio is Android's official IDE. It is purpose-built for Android to accelerate your

development and help you build the highest-quality apps for every Android device. Based on Intellij

IDEA, Android Studio provides the fastest possible turnaround on your coding and run ning workflow.

Instant Run

Android Studio's Instant Run feature pushes code and resource changes to your running app. It

intelligently understands the changes and often delivers them without restarting your app or

rebuilding your APK, so you can see the effects immediately.

Intelligent code editor

The code editor helps you write better code, work faster, and be more productive by offering

advanced code completion, refactoring, and code analysis. As you type, Android Studio provides

suggestions in a dropdown list. Simply press Tab to insert the code.

Fast and feature-rich emulator

The Android Emulator installs and starts your apps faster than a real device and allows you to

prototype and test your app on various Android device configurations: phones, tablets, Android

Wear, and Android TV devices. You can also simulate a variety of hardware features such as GPS

location, network latency, motion sensors, and multi-touch input.

Code templates and sample apps

Android Studio includes project and code templates that make it easy to add well-established

patterns such as a navigation drawer and view pager. You can start with a code template or even

right-click an API in the editor and select Find Sample Code to search for examples. Moreover, you

can import fully functional apps from GitHub, right from the Create Project screen.

Lintelligence

Android Studio provides a robust static analysis framework and includes over 280 different lint

checks across the entirety of your app. Additionally, it provides several quick fixes that help you

address issues in various categories, such as performance, security, and correctness, with a single

click.

Testing tools and frameworks

Android Studio provides extensive tools to help you test your Android apps with JUnit 4 and

functional UI test frameworks. With Espresso Test Recorder, you can generate UI test code by

recording your interactions with the app on a device or emulator. You can run your tests on a device,

an emulator, a continuous integration environment, or in Firebase Test Lab

Configure builds without limits

Android Studio's project structure and Gradle-based builds provide the flexibility you need to

generate APKs for all device types.

Robust and flexible build system

Android Studio offers build automation, dependency management, and customizable build

configurations. You can configure your project to include local and hosted libraries, and define build

variants that include different code and resources, and apply different code shrinking and app signing

configurations.

Designed for teams

Android Studio integrates with version control tools, such as GitHub and Subversion, so you can keep

your team in sync with project and build changes. The open source Gradle build system allows you to

tailor the build to your environment and run on a continuous integration server such as Jenkins.

Optimized for all Android devices

Android Studio provides a unified environment where you can build apps for Android phones,

tablets, Android Wear, Android TV, and Android Auto. Structured code modules allow you to divide

your project into units of functionality that you can independently build, test, and debug.

Create rich and connected apps
Android Studio knows not all code is written in Java and not all code runs on the user's device.

C++ and NDK support

Android Studio fully supports editing C/C++ project files so you can quickly build JNI components in

your app. The IDE provides syntax highlighting and refactoring for C/C++, and an LLDB-based

debugger that allows you to simultaneously debug your Java and C/C++ code. The build tools can also

execute your CMake and ndk-build scripts without any modification and then add the shared objects

to your APK.

Firebase and Cloud integration

The Firebase Assistant helps you connect your app to Firebase and add services such as Analytics,

Authentication, Notifications and more with step-by-step procedures right inside Android Studio.

Built-in tools for Google Cloud Platform also help you integrate your Android app with services such

as Google Cloud Endpoints and project modules specially-designed for Google App Engine.

Eliminate tiresome tasks
Android Studio provides GUI tools that simplify the less interesting parts of app development.

Layout Editor

When working with XML layout files, Android Studio provides a drag-and-drop visual editor that

makes it easier than ever to create a new layout. The Layout Editor was built in unison with the

ConstraintLayout API, so you can quickly build a layout that adapts to different screen sizes by

dragging views into place and then adding layout constraints with just a few clicks.

APK Analyzer

You can use the APK Analyzer to easily inspect the contents of your APK. It reveals the size of each

component so you can identify ways to reduce the overall APK size. It also allows you preview

packaged assets, inspect the DEX files to troubleshoot multidex issues, and compare the differences

between two APKs.

Vector Asset Studio

Android Studio makes it easy to create a new image asset for every density size. With Vector Asset

Studio, you can select from Google-provided material design icons or import an SVG or PSD file.

Vector Asset Studio can also generate bitmap files for each screen density to support older versions

of Android that don't support the Android vector drawable format.

Translations Editor

The Translations Editor gives you a single view of all of your translated resources, making it easy to

change or add translations, and to find missing translations without opening each version of the

strings.xml file. It even provides a link to order translation services.

Android Studio is a blessing in Android development field earlier the work is done on Eclipse.

Android is an Open Handset Alliance which anyone can learn and give tremendous development to

the IT Industries. Android Studio is a platform, which helps to build advanced and fully developed

applications with latest features. Android is always getting upgraded with the latest technologies

with very frequently new versions. Learning professional android app development course will

boost your career in this vast developing area. Android is a fastest growing and developing language

at present.

Create "Hello World" app
In this task, you will implement the "Hello World" app to verify that Android studio is correctly

installed and learn the basics of developing with Android Studio.

Create the "Hello World" app

1. Launch Android Studio if it is not already opened.

2. In the main Welcome to Android Studio window, click "Start a new Android Studio project".

3. In the New Project window, give your application an Application Name, such as "Hello

World".

4. Verify the Project location, or choose a different directory for storing your project.

5. Choose a unique Company Domain.

○ Apps published to the Google Play Store must have a unique package name. Since

domains are unique, prepending your app's name with your or your company's

domain name is going to result in a unique package name.

○ If you are not planning to publish your app, you can accept the default example

domain.

6. Verify that the default Project location is where you want to store your Hello World app and

other Android Studio projects, or change it to your preferred directory. Click Next.

7. On the Target Android Devices screen, "Phone and Tablet" should be selected. And select

the API and is set as the Minimum SDK.

8. Click Next.

9. If your project requires additional components for your chosen target SDK, Android Studio

will install them automatically. Click Next.

10. Customize the Activity window. Every app needs at least one activity. An activity represents

a single screen with a user interface and Android Studio provides templates to help you get

started. For the Hello World project, choose the simplest template, the "Empty Activity"

project template is the simplest template available.

11. It is a common practice to call your main activity MainActivity. This is not a requirement.

12. Make sure the Generate Layout file box is checked.

13. Make sure the Backwards Compatibility (App Compat) box is checked.

14. Leave the Layout Name as activity_main. It is customary to name layouts after the activity

they belong to. Accept the defaults and click Finish.

After these steps, Android Studio:

● Creates a folder for your Android Studio Projects.

● Builds your project with Gradle. Android Studio uses Gradle as it's build system.

● Opens the code editor with your project.

● Displays a tip of the day.

○ Android Studio offers many keyboard shortcuts, and reading the tips is a great way to

learn them over time.

Create a virtual device (emulator)

The Android Virtual Device (AVD) manager is used to create a virtual device or emulator that

simulates the configuration for a particular type of Android device.

Using the AVD Manager, you define the hardware characteristics of a device and its API level, and

save it as a virtual device configuration.

When you start the Android emulator, it reads a specified configuration and creates an emulated

device that behaves exactly like a physical version of that device , but it resides on your computer .

With virtual devices, you can test your apps on different devices (tablets, phones) with different API

levels to make sure it looks good and works for most users. You do not need to depend on having a

physical device available for app development.

Create a virtual device

In order to run an emulator on your computer, you have to create a configuration that describes the

virtual device.

1. In Android Studio, select Tools > Android > AVD Manager, or click the AVD Manager icon

in the toolbar.

2. Click the +Create Virtual Device…. If you have created a virtual device before, the window

shows all of your existing devices and the button is at the bottom.

3. The Select Hardware screen appears showing a list of pre configured hardware devices. For

each device, the table shows its diagonal display size (Size), screen resolution in pixels

(Resolution), and pixel density (Density).

4. For the Nexus 5 device, the pixel density is xxhdpi, which means your app uses the launcher

icons in the xxhdpi folder of the mipmap folder. Likewise, your app will use layouts and

drawables from folders defined for that density as well.

5. Choose the Nexus 5 hardware device and click Next.

6. On the System Image screen, from the Recommended tab, choose which version of the

Android system to run on the virtual device. You can select the latest system image.

7. There are many more versions available than shown in the Recommended tab. Look at the

x86 Images and Other Images tabs to see them.

8. If a Download link is visible next to a system image version, it is not installed yet, and you

need to download it. If necessary, click the link to start the download, and click Finish when

it's done.

9. On System Image screen, choose a system image and click Next.

10. Verify your configuration, and click Finish.

Run your app on an emulator

1. In Android Studio, select Run > Run app or click the Run icon in the toolbar.

2. In the Select Deployment Target window, under Available Emulators, select Nexus 5 API 23

and click OK.

The emulator starts and boots just like a physical device. Depending on the speed of your computer,

this may take a while. Your app builds, and once the emulator is ready, Android Studio will upload the

app to the emulator and run it.

You should see the Hello World app as shown in the following screenshot.

The project structure

In the Project > Android view of your previous task, there

are three top-level folders below your app folder:

manifests, java, and res.

1. The manifests folder.

This folder contains AndroidManifest.xml. This file

describes all of the components of your Android app and is

read by the Android run-time system when your program is

executed.

2. The java folder. All your Java language files are

organized in this folder. The java folder contains three

subfolders:

○ com.example.hello.helloworld (or the

domain name you have specified): All the files for a

package are in a folder named after the package. For your

Hello World application, there is one package and it only

contains MainActivity.java

○ com.example.hello.helloworld(androidTest): This folder is for your instrumented

tests, and starts out with a skeleton test file.

○ com.example.hello.helloworld(test): This folder is for your unit tests and starts out

with an automatically created skeleton unit test file.

3. The res folder. This folder contains all the resources for your app, including images, layout

files, strings, icons, and styling. It includes these subfolders:

○ drawable. Store all your app's images in this folder.

○ layout. Every activity has at least one layout file that describes the UI in XML. For

Hello World, this folder contains activity_main.xml.

○ mipmap. Store your launcher icons in this folder. There is a sub-folder for each

supported screen density. Android uses the screen density, that is, the number of

pixels per inch to determine the required image resolution. Android groups all actual

screen densities into generalized densities, such as medium (mdpi), high (hdpi), or

extra-extra-extra-high (xxxhdpi). The ic_launcher.png folder contains the default

launcher icons for all the densities supported by your app.

○ values. Instead of hardcoding values like strings, dimensions, and colors in your XML

and Java files, it is best practice to define them in their respective values file. This

makes it easier to change and be consistent across your app.

4. The values subfolder within the res folder. It includes these subfolders:

○ colors.xml. Shows the default colors for your chosen theme, and you can add your

own colors or change them based on your app's requirements.

○ dimens.xml. Store the sizes of views and objects for different resolutions.

○ strings.xml. Create resources for all your strings. This makes it easy to translate them

to other languages.

○ styles.xml. All the styles for your app and theme go here. Styles help give your app a

consistent look for all UI elements.

Android Virtual Device (AVD)
An Android Virtual Device (AVD) is a configuration that defines the characteristics of an

Android phone, tablet, Wear OS, or Android TV device that you want to simulate in the
Android Emulator. The Android Emulator simulates Android devices on your computer so
that you can test your application on a variety of devices and Android API levels without
needing to have each physical device. The emulator provides almost all of the capabilities of
a real Android device. You can simulate incoming phone calls and text messages, specify the
location of the device, simulate different network speeds, simulate rotation and other
hardware sensors, access the Google Play Store, and much more. Testing your app on the
emulator is in some ways faster and easier than doing so on a physical device.
Each instance of the Android Emulator uses an Android virtual device (AVD) to specify the
Android version and hardware characteristics of the simulated device. To effectively test your
app, you should create an AVD that models each device on which your app is designed to
run. To create and manage AVDs, use the AVD Manager.
Each AVD functions as an independent device, with its own private storage for user data, SD
card, and so on. By default, the emulator stores the user data, SD card data, and cache in a
directory specific to that AVD. When you launch the emulator, it loads the user data and SD
card data from the AVD directory.

The AVD Manager is an interface you can launch from Android Studio that helps you
create and manage AVDs.
To open the AVD Manager, do one of the following:

Select Tools > AVD Manager.
Click AVD Manager AVD Manager icon in the toolbar.

About AVDs
An AVD contains a hardware profile, system image, storage area, skin, and other properties.
Hardware profile
The hardware profile defines the characteristics of a device as shipped from the factory. The
AVD Manager comes preloaded with certain hardware profiles, such as Pixel devices, and
you can define or customize the hardware profiles as needed.
System images
A system image, that the emulator uses to simulate the operating system. labeled with
Google APIs includes access to Google Play services.
Storage area
The AVD has a dedicated storage area on your development machine. It stores the device user
data, such as installed apps and settings, as well as an emulated SD card.
Skin
An emulator skin specifies the appearance of a device. The AVD Manager provides some
predefined skins. You can also define your own, or use skins provided by third parties.
AVD and app features
Be sure your AVD definition includes the device features your app depends on. See Hardware
Profile Properties and AVD Properties for lists of features you can define in your AVDs.
You can use the emulator manually through its graphical user interface and programmatically
through the command line and the emulator console.
Hardware and software requirements
The Android Emulator has additional requirements beyond the basic system requirements for
Android Studio:

SDK Tools 26.1.1 or higher
64-bit processor
Windows: CPU with UG (unrestricted guest) support
HAXM 6.2.1 or later (HAXM 7.2.0 or later recommended)

The use of hardware acceleration has additional requirements on Windows and Linux:
Intel processor on Windows or Linux: Intel processor with support for Intel VT-x, Intel
EM64T (Intel 64), and Execute Disable (XD) Bit functionality

AMD processor on Linux: AMD processor with support for AMD Virtualization (AMD-V)
and Supplemental Streaming SIMD Extensions 3 (SSSE3)
AMD processor on Windows: Android Studio 3.2 or higher and Windows 10 April 2018
release or higher for Windows Hypervisor Platform (WHPX) functionality
Run an app on the Android Emulator
You can run an app from an Android Studio project, or you can run an app that's been
installed on the Android Emulator as you would run any app on a device.
To start the Android Emulator and run an app in your project:
Open an Android Studio project and click Run .
The Select Deployment Target dialog appears.

Select Deployment Target dialog

If you receive an error or warning message at the top of the dialog, click the link to
correct the problem or get more information.

Some errors you must fix before you can continue, such as certain Hardware
Accelerated Execution Manager (Intel HAXM) errors.
Launch the Android Emulator without first running an app
To start the emulator:

Open the AVD Manager.
Double-click an AVD, or click Run .

The Android Emulator appears.
While the emulator is running, you can run Android Studio projects and choose the emulator
as the target device. You can also drag one or more APKs onto the emulator to install them,
and then run them.
Create and manage virtual devices

To open the AVD Manager, do one of the following:
Select Tools > AVD Manager.
Click AVD Manager AVD Manager icon in the toolbar.

Create an AVD
Click Create Virtual Device, at the bottom of the AVD Manager dialog.

The Select Hardware page appears.

Select a hardware profile, and then click Next.
If you don't see the hardware profile you want, you can create or import a hardware profile.

The System Image page appears.

Select the system image for a particular API level, and then click Next.
The Recommended tab lists recommended system images. The other tabs include a

more complete list. The right pane describes the selected system image. x86 images run the
fastest in the emulator.

If you see Download next to the system image, you need to click it to download the system
image. You must be connected to the internet to download it.

The API level of the target device is important, because your app won't be able to run on a
system image with an API level that's less than that required by your app, as specified in the
minSdkVersion attribute of the app manifest file.

If your app declares a <uses-library> element in the manifest file, the app requires a
system image in which that external library is present. If you want to run your app on an
emulator, create an AVD that includes the required library. To do so, you might need to use an
add-on component for the AVD platform; for example, the Google APIs add-on contains the
Google Maps library.
The Verify Configuration page appears.

Change AVD properties as needed, and then click Finish.
Click Show Advanced Settings to show more settings, such as the skin.
The new AVD appears in the Your Virtual Devices page or the Select Deployment Target
dialog
Limitations
The Android Emulator doesn't include virtual hardware for the following:
1. Bluetooth
2. NFC
3. SD card insert/eject
4. Device-attached headphones
5. USB
The watch emulator for Wear OS doesn't provide the Overview (Recent Apps) button, D-pad,
and fingerprint sensor
App Manifest Overview
Every app project must have an AndroidManifest.xml file at the root of the project source set.
The manifest file describes essential information about your app to the Android build tools,
the Android operating system, and Google Play.
Among many other things, the manifest file is required to declare the following:
The app's package name, which usually matches your code's namespace. The Android build
tools use this to determine the location of code entities when building your project.
The components of the app, which include all activities, services, broadcast receivers, and
content providers. Each component must define basic properties such as the name of its Java

class. It can also declare capabilities such as which device configurations it can handle, and
intent filters that describe how the component can be started.
The permissions that the app needs in order to access protected parts of the system or other
apps.
The hardware and software features the app requires, which affects which devices can install
the app from Google Play.
If you're using Android Studio to build your app, the manifest file is created for you, and
most of the essential manifest elements are added as you build your app
The XML below is a simple example AndroidManifest.xml that declares two activities for the
app.
<?xml version="1.0" encoding="utf-8"?>
<manifest

xmlns:android="http://schemas.android.com/apk/res/android"
android:versionCode="1"
android:versionName="1.0"
package="com.example.myapp">
<uses-sdk android:minSdkVersion="15" android:targetSdkVersion="26" />
<application
android:allowBackup="true"
android:icon="@mipmap/ic_launcher"
android:roundIcon="@mipmap/ic_launcher_round"
android:label="@string/app_name"
android:supportsRtl="true"
android:theme="@style/AppTheme">
<!-- This name is resolved to com.example.myapp.MainActivity
based upon the package attribute -->
<activity android:name=".MainActivity">
<intent-filter>

<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>
<activity
android:name=".DisplayMessageActivity"
android:parentActivityName=".MainActivity" />
</application>

</manifest>
The following sections describe how some of the most important characteristics of your app
are reflected in the manifest file.
The manifest file's root element requires an attribute for your app's package name.
For example, the following snippet shows the root <manifest> element with the package
name "com.example.myapp":

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.example.myapp"
android:versionCode="1"
android:versionName="1.0" >
...

</manifest>
As such, the name in the manifest's package attribute should always match your project's base
package name where you keep your activities and other app code.
App components
For each app component that you create in your app, you must declare a corresponding XML
element in the manifest file:

<activity> for each subclass of Activity.
<service> for each subclass of Service.
<receiver> for each subclass of BroadcastReceiver.
<provider> for each subclass of ContentProvider.

If you subclass any of these components without declaring it in the manifest file, the system
cannot start it.
The name of your subclass must be specified with the name attribute, using the full package
designation. For example
<manifest ... >

<application ... >
<activity android:name="com.example.myapp.MainActivity" ... >
</activity>
</application>

</manifest>
Intent filters
App activities, services, and broadcast receivers are activated by intents. An intent is a
message defined by an Intent object that describes an action to perform, including the data to
be acted upon, the category of component that should perform the action, and other
instructions.
When an app issues an intent to the system, the system locates an app component that can
handle the intent based on intent filter declarations in each app's manifest file. The system
launches an instance of the matching component and passes the Intent object to that
component. An app component can have any number of intent filters (defined with the
<intent-filter> element), each one describing a different capability of that component.
Icons and labels
A number of manifest elements have icon and label attributes for displaying a small icon and
a text label, respectively, to users for the corresponding app component.
In every case, the icon and label that are set in a parent element become the default icon and
label value for all child elements.
Permissions

Android apps must request permission to access sensitive user data (such as contacts and
SMS) or certain system features (such as the camera and internet access). Each permission is
identified by a unique label. For example, an app that needs to send SMS messages must have
the following line in the manifest:
<manifest ... >

<uses-permission android:name="android.permission.SEND_SMS"/>
...

</manifest>
Beginning with Android 6.0 (API level 23), the user can approve or reject some app
permisions at runtime. But no matter which Android version your app supports, you must
declare all permission requests with a <uses-permission> element in the manifest
Device compatibility
The manifest file is also where you can declare what types of hardware or software features
your app requires, and thus, which types of devices your app is compatible with.
The following are just a couple of the most common tags.
<uses-feature>
The <uses-feature> element allows you to declare hardware and software features your app
needs.
<uses-sdk>
Each successive platform version often adds new APIs not available in the previous version.
To indicate the minimum version with which your app is compatible, your manifest must
include the <uses-sdk> tag and its minSdkVersion attribute.

