
Module 3 : UI Design and Data storage 

UI components: -Layout: Linear, Absolute, Table, Frame. - Views: Text, Edit, Button, 

ImageButton, CheckBox, ToggleButton, RadioButton, RadioGroup, List, Image, Grid . Menus 

– Options, Context- Action bar, Notifications- data storage in Android- various storage 

technologies- operations for data storage and retrieval to/from internal and external memory 

- SQLite database- - content Providers and their relative advantages and disadvantages - 

SMS service in Android - publish application in Google Play Store. 

 

Understanding The Components Of A Screen 

The basic unit of an Android application is an activity. An activity displays the user 

interface of your application, which may contain widgets like buttons, labels, text boxes, and 

so on. Typically, you define your UI using an XML file (e.g., the main.xml fi le located in the 

res/layout folder), which may look like this: 

<?xml version=”1.0” encoding=”utf-8”?> 

<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android” 

android:orientation=”vertical” 

android:layout_width=”fill_parent” 

android:layout_height=”fill_parent” 

> 

<TextView 

android:layout_width=”fill_parent” 

android:layout_height=”wrap_content” 

android:text=”@string/hello” 

/> 

</LinearLayout> 

During run time, you load the XML UI in the onCreate() event handler in your Activity class, 

using the setContentView() method of the Activity class: 

@Override 

public void onCreate(Bundle savedInstanceState) { 

super.onCreate(savedInstanceState); 

setContentView(R.layout.main); 

} 



During compilation, each element in the XML file is compiled into its equivalent Android 

GUI class, with attributes represented by methods. The Android system then creates the UI of 

the activity when it is loaded. 

Views And Viewgroups 

An activity contains Views and ViewGroups. A view is a widget that has an 

appearance on screen. Examples of views are buttons, labels, and text boxes. A view derives 

from the base class android.view.View. One or more views can be grouped together into a 

ViewGroup. A ViewGroup (which is itself a special type of view) provides the layout in 

which you can order the appearance and sequence of views. Examples of ViewGroups 

include LinearLayout and FrameLayout. A ViewGroup derives from the base class 

android.view.ViewGroup. 

Android supports the following ViewGroups: 

➤➤ LinearLayout 

➤➤ AbsoluteLayout 

➤➤ TableLayout 

➤➤ RelativeLayout 

➤➤ FrameLayout 

➤➤ ScrollView 

The following sections describe each of these ViewGroups in more detail. Note that in 

practice it is common to combine different types of layouts to create the UI you want. 

Linear Layout 

The Linear Layout arranges views in a single column or a single row. Child views can 

be arranged either vertically or horizontally. To see how Linear Layout works, consider the 

following elements typically contained in the main.xml file: 

<?xml version=”1.0” encoding=”utf-8”?> 

<LinearLayout 

xmlns:android=”http://schemas.android.com/apk/res/android” 

android:orientation=”vertical” 

android:layout_width=”fill_parent” 

android:layout_height=”fill_parent” 

> 

<TextView 

android:layout_width=”fill_parent” 



android:layout_height=”wrap_content” 

android:text=”@string/hello” 

/> 

</LinearLayout> 

In the main.xml file, observe that the root element is <LinearLayout> and it has a 

<TextView> element contained within it. The <LinearLayout> element controls the order in 

which the views contained within it appear. Each View and ViewGroup has a set of common 

attributes, some of which are described in Table 3-1. 

Tab le 3-1: Common Attributes Used in Views and ViewGroups 

 

 

NOTE Some of these attributes are applicable only when a View is in a specific 

ViewGroup. For example, the layout_weight and layout_gravity attributes are applicable only 

when a View is in either a LinearLayout or a TableLayout. 

For example, the width of the <TextView> element fills the entire width of its parent (which 

is the screen in this case) using the fill_parent constant. Its height is indicated by the 

wrap_content constant, which means that its height is the height of its content (in this case, 

the text contained within it). If you don’t want to have the <TextView> view occupy the 

entire row, you can set its layout_width attribute to wrap_content, like this: 

< TextView 

android:layout_width=”wrap_content 

android:layout_height=”wrap_content” 



android:text=”@string/hello” 

/> 

This will set the width of the view to be equal to the width of the text contained within it. 

Consider the following layout: 

<?xml version=”1.0” encoding=”utf-8”?> 

<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android” 

android:orientation=”vertical” 

android:layout_width=”fill_parent” 

android:layout_height=”fill_parent” 

> 

<TextView 

android:layout_width=”105dp” 

android:layout_height=”wrap_content” 

android:text=”@string/hello” 

/> 

<Button 

android:layout_width=”160dp” 

android:layout_height=”wrap_content” 

android:text=”Button” 

/> 

</LinearLayout> 


