TED (15) – 3133		Reg. No
(REVISIO	N — 2015)	Signature
	LOMA EXAMINATION IN ENGIN MANAGEMENT/COMMERCIAL PRA	
	DIGITAL COMPUTER PI	RINCIPLES
·		
		[Time: 3 hours
	(Maximum marks : 10	00)
	PART — A	
	(Maximum marks : 1	0)
		Marks
I A	Answer all questions in one or two sentences. Each	ch question carries 2 marks.
1	Define binary codes.	
2	2. Define minterm.	
3	3. What is the function of an encoder?	
4	4. Define a flip-flop.	
. 5	5. What is mean by resolution in DAC?	$(5 \times 2 = 10)$
	1	
	PART — B	
	(Maximum marks: 3	0)
II A	Answer any five of the following questions. Each	question carries 6 marks.
1	1. Explain the behavior of universal gates with lo	gic diagram and truth table.
2	2. Reduce the expression $F = A + B[AC+(B+C)]$	')D]
3	3. Convert (10110) ₂ to gray code and (11011) _{gray}	to binary.
4	4. Design a half adder with truth table, expression	ns and logic diagram.

Differentiate synchronous and asynchronous sequential circuits.

Describe the working of R-2R DAC.

Explain the working of a T-flipflop with logic diagram and truth table.

[151]

5.

6.

 $(5 \times 6 = 30)$

PART — C

(Maximum marks: 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

Unit — I

		ONII — I	
III	(a)	Convert the following:	
		(i) 163.875 ₁₀ to binary	٠.
		(ii) 4F7.A8 ₁₆ to octal	
		(iii) 2056 ₈ to decimal	9
	(b)	Construct an EX-OR gate using NAND gate.	6
		OR	
IV	(a)	Explain about alpha numeric codes with examples.	9
	(b)	Reduce the expression $F = (A + (BC)')' (AB' + ABC)$ using Boolean algebra.	6
		Unit — II	
V	(a)	Design a full adder with minimum number of gates.	9
	(b)	Reduce the expression $F(x,y,z) = \sum m(0, 1, 2, 3, 6)$	6
		OR	
VI	(a)	Explain the working of a 4 × 1 Multiplexer with diagram.	8
	(b)	Explain the working of a magnitude comparator.	7
		Unit — III	
VII	(a)	Explain the working of JK Master slave flip flop with logic diagram.	9
	(b)	Explain the working of 3 bit Johnson counter.	6
		OR	
VIII	(a)	Explain the working of a parallel in serial out shift register.	9
	(b)	Explain the working of 4 bit ring counter.	6
		Unit — IV	
IX	(a)	Explain the working of counter ramp type ADC with diagram.	9
	(b)	Write notes on error correction codes.	6
		OR	
X	(a)	Draw a logic diagram to implement the Boolean function.	
		Fl = (AB + AC + BC)'	
		F2 = AB + AC + A'B'C' in PLA	9
	(b)	Write notes on the following DAC parameters.	
•		(i) Monotonicity (ii) Setting time.	6